jika f(x)=8-2x dan g(x)=x+ 1/x-3 maka tentukan g o g^-1 dan f^-1 o f
Matematika
melsyah
Pertanyaan
jika f(x)=8-2x dan g(x)=x+ 1/x-3 maka tentukan g o g^-1 dan f^-1 o f
1 Jawaban
-
1. Jawaban hendrisyafa
g(x) = [tex] \frac{x+1}{x-3} [/tex]
y = [tex] \frac{x+1}{x-3} [/tex]
y(x-3) = x+1
xy-3y = x+1
xy-x = 3y+1
x (y-1) = 3y+1
x = [tex] \frac{3y+1}{y-1} [/tex]
[tex] g^{-1} (x) [/tex] = [tex] \frac{3x+1}{x-1} [/tex]
shgga (g o [tex] g^{-1} [/tex]) (x) = g ([tex] g^{-1}(x)) [/tex]
= g ([tex] \frac{3x+1}{x-1} [/tex])
= [tex] \frac{ \frac{3x+1}{x-1} + 1 }{ \frac{3x+1}{x-1} -3 } } [/tex]
----------------------------------------- x [tex] \frac{x-1}{x-1} [/tex]
= [tex] \frac{3x+1 + x-1}{3x+1-3x+3} [/tex]
= [tex] \frac{4x}{4} = 4[/tex]
f(x) = 8-2x
y = 8-2x
2x = 8-y
x = [tex] \frac{8-y}{2} [/tex]
[tex] f^{-1} (x) = \frac{8-x}{2} [/tex]
Shgga [tex] f^{-1} o f [/tex] = [tex] f^{-1} (f(x)) = f^{-1}(8-2x) [/tex]
= [tex] \frac{8-(8-2x)}{2} [/tex]
= [tex] \frac{2x}{2} = 2[/tex]